Discussion on Skew-normal Approximation of a Binomial Distribution
نویسندگان
چکیده
Approximating a binomial distribution by a suitable normal distribution is a well known practice, and widely discussed in introductory level statistics books. Recently it has been shown (in Chang et al. (2008)) that the skew-normal distributions can provide a far better approximation than the normal ones. This article revisits the approximation issue and other related inferential aspects. Though we are restricting ourselves here in binomial distribution only, our investigation shows that the same patterns hold good for Poisson, negative binomial and hypergeometric distributions as well.
منابع مشابه
An Extension of the Birnbaum-Saunders Distribution Based on Skew-Normal t Distribution
In this paper, we introducte a family of univariate Birnbaum-Saunders distributions arising from the skew-normal-t distribution. We obtain several properties of this distribution such as its moments, the maximum likelihood estimation procedure via an EM-algorithm and a method to evaluate standard errors using the EM-algorithm. Finally, we apply these methods to a real data set to demonstr...
متن کاملA Flexible Skew-Generalized Normal Distribution
In this paper, we consider a flexible skew-generalized normal distribution. This distribution is denoted by $FSGN(/lambda _1, /lambda _2 /theta)$. It contains the normal, skew-normal (Azzalini, 1985), skew generalized normal (Arellano-Valle et al., 2004) and skew flexible-normal (Gomez et al., 2011) distributions as special cases. Some important properties of this distribution are establi...
متن کاملA Two-parameter Balakrishnan Skew-normal Distribution
In this paper, we discuss a generalization of Balakrishnan skew-normal distribution with two parameters that contains the skew-normal, the Balakrishnan skew-normal and the two-parameter generalized skew-normal distributions as special cases. Furthermore, we establish some useful properties and two extensions of this distribution.
متن کاملProbability-possibility DEA model with Fuzzy random data in presence of skew-Normal distribution
Data envelopment analysis (DEA) is a mathematical method to evaluate the performance of decision-making units (DMU). In the performance evaluation of an organization based on the classical theory of DEA, input and output data are assumed to be deterministic, while in the real world, the observed values of the inputs and outputs data are mainly fuzzy and random. A normal distribution is a contin...
متن کاملOn the Canonical-Based Goodness-of-fit Tests for Multivariate Skew-Normality
It is well-known that the skew-normal distribution can provide an alternative model to the normal distribution for analyzing asymmetric data. The aim of this paper is to propose two goodness-of-fit tests for assessing whether a sample comes from a multivariate skew-normal (MSN) distribution. We address the problem of multivariate skew-normality goodness-of-fit based on the empirical Laplace tra...
متن کامل